Study of Interactions between Amino Acids and Zinc Chloride in Aqueous Solutions through Volumetric Measurements at T = (288.15 to 318.15) K

Tarlok S. Banipal,*^{,†} Jasbir Kaur,[†] Parampaul K. Banipal,[‡] and Kultar Singh[†]

Department of Applied Chemistry and Department of Chemistry, Guru Nanak Dev University, Amritsar-143005, (Punjab), India

Densities, ρ , of glycine, DL- α -alanine, DL- α -amino-*n*-butyric acid, L-valine, and L-leucine in aqueous and in mixed aqueous solutions of zinc chloride, (0.1, 0.5, 1.0, and 1.5) mol·kg⁻¹, have been determined by using a vibrating-tube digital densimeter at (288.15, 298.15, 308.15, and 318.15) K. These data have been used to calculate the apparent molar volumes, $V_{2,\phi}$, of the studied amino acids. The partial molar volumes, V_2^0 , at infinite dilution are evaluated and further used to obtain the corresponding transfer volumes, $\Delta_t V^0$ for amino acids from water to aqueous zinc chloride solutions. Partial molar expansibilities, V_E^0 , hydration numbers, n_H , interaction coefficients, and side chain group contributions of amino acids have also been calculated. The $\Delta_t V^0$ values for the studied amino acids are positive, and these values increase with an increase in the concentration of zinc chloride as well as with temperature. The parameters obtained from the volumetric study are used to understand various mixing effects due to the interactions between amino acids and zinc chloride in aqueous solutions.

Introduction

Globular proteins form a class of macromolecules which have well-defined physicochemical properties and functions in biological systems. They have a marginally stable native structure that results from a fine balance among various noncovalent forces: ionic and dipolar interactions, hydrogen bonding, and hydrophobic forces, etc.¹ The process of denaturation of a globular protein in aqueous solutions involves a change from the native state, in which the protein adopts its characteristic folded conformation, to the denatured state where the protein is predominantly in an extended form.^{2,3} During this process, substantial changes in protein solvation will occur, and these changes will make an important contribution to the energetics of protein denaturation. The study of these protein-solvent interactions is difficult because of the complexity of the interactions in such a large molecule. However, one useful approach, which can be of help in our understanding of these interactions, is to study simple compounds such as amino acids and peptides, which model some specific aspects of the protein structure. A survey of the literature shows that there are many studies on the physicochemical properties of amino acids in the presence of salts of alkali and alkaline earth metals, but there are only a few studies in aqueous solutions of transition metal salts.4-12 Transition metals ions (zinc, copper, iron, manganese, and cobalt) play a vital role in life systems, because of their natural presence in vitamins, enzymes, and protein. Zinc ions are very important for a number of biological functions in the human body.¹³ Therefore, we planned to carry out volumetric studies on amino acids in aqueous solutions of salts of transition metal ions having some biological importance. Volumetric properties are useful for the elucidation of noncovalent interactions occurring in solutions and characterizing the structure and properties of solutions.¹⁴ In continuation of our studies on the

* Department of Chemistry.

amino acids, in this paper we report the partial molar volumes V_2^0 of glycine, DL- α -alanine, DL- α -amino-*n*-butyric acid, L-valine, and L-leucine, in water and in aqueous solutions of (0.1, 0.5, 1.0, and 1.5) mol·kg⁻¹ ZnCl₂ at (288.15, 298.15, 308.15, and 318.15) K. From these data, the partial molar volumes of transfer, $\Delta_t V^0$, hydration numbers, $n_{\rm H}$, interaction coefficients, and side chain contributions have been calculated. These results have been rationalized in terms of various interactions occurring in these solutions.

Experimental Section

Glycine (G-7126, 99 %), DL-α -alanine (A-7502, 99 %), DLα-amino-n-butyric acid (A-1754, 98 %), L-valine (V-0500, 99 %), and L-leucine (L-8000, 98 %) were obtained from the Sigma Chemical Co. and were dried for 24 h in a vacuum oven before use. Analytical grade zinc chloride procured from Thomas Baker having a purity of 98 % was used as such after drying for 72 h in a vacuum desiccator at room temperature. Deionized, doubly distilled degassed water with a specific conductance less than $1.29 \cdot 10^{-6} \ \Omega^{-1} \cdot \text{cm}^{-1}$ was used for the preparation of all solutions. The solutions were prepared on the weight basis by using a Mettler balance having a precision of \pm 0.01 mg. The densities of the solutions were measured by using a vibrating tube digital densimeter (model DMA 60/602, Anton Paar, Austria) having a precision of $\pm~1{\cdot}10^{-3}~{\rm kg}{\cdot}{\rm m}^{-3}$ and an accuracy of $\pm 3 \cdot 10^{-3}$ kg·m⁻³. The temperature of water around the densimeter cell was controlled within \pm 0.01 K using a thermostat. The densimeter was calibrated with dry air and pure water and was checked by measuring the densities of aqueous sodium chloride solutions [presently measured densities for aqueous solutions of sodium chloride are: (1005.594, 1010.434, 1017.310, 1036.665, 1054.954, 1071.250, and 1087.547) $kg \cdot m^{-3}$ at (0.20900, 0.33112, 0.50650, 1.01279, 1.51000, 1.97014, and 2.44845) mol $\cdot kg^{-1}$ of sodium chloride, respectively] which agree well with the literature values¹⁵ [literature values of density are: (1005.571, 1017.344, 1036.690, 1054.672, 1071.353, and 1087.608) kg·m⁻³ at (0.20918, 0.50653, 1.01279,

^{*} Corresponding author. Fax: +911832258819/20. E-mail address: tsbanipal@yahoo.com.

Department of Applied Chemistry.

Figure 1. Partial molar volumes of transfer $\Delta_t V^0$ of some amino acids vs m_s : \blacklozenge , glycine; \blacksquare , DL- α -alanine; \blacktriangle , DL- α -amino-*n*-butyric acid; \times , L-valine; \diamondsuit , L-leucine at (a) 288.15 K; (b) 298.15 K; (c) 308.15 K; and (d) 318.15 K.

Figure 2. Contribution of the interaction coefficients to the partial molar transfer volumes, $\Delta_t V^0$, of the amino acids vs $m_{\rm S}$ of aqueous ZnCl₂ solutions at 298.15 K. The symbol for the pair is $V_{\rm XYY}$ and for the triplet is $V_{\rm XYY}$. Symbol for the glycine: \blacklozenge , $V_{\rm XYY}$: \Box , $V_{\rm XYY}$. Symbol for the DL- α -alanine: \blacktriangle , $V_{\rm XY}$; \prec , $V_{\rm XYY}$. Symbol for the L- α -alanine: \blacklozenge , $V_{\rm XY}$; \prec , $V_{\rm XYY}$. Symbol for the L- α -alanine: \blacklozenge , $V_{\rm XY}$; \diamondsuit , $V_{\rm XYY}$. Symbol for the L- α -alanine: \dashv , $V_{\rm XY}$; \diamondsuit , $V_{\rm XYY}$. Symbol for the L-valine: +, $V_{\rm XY}$; \bigtriangleup , $V_{\rm XYY}$. Symbol for the L-leucine: -, $V_{\rm XY}$; \diamondsuit , $V_{\rm XYY}$.

1.50262, 1.97403, and 2.44952) mol·kg⁻¹ of sodium chloride, respectively] at 298.15 K.

Results and Discussion

Apparent molar volumes, $V_{2,\phi}$ of selected amino acids in water and in (0.1, 0.5, 1.0, and 1.5) mol·kg⁻¹ ZnCl₂ solutions at (288.15, 298.15, 308.15, and 318.15) K, have been calculated using the following relationship

$$V_{2,\phi} = (M/\rho) - [(\rho - \rho_0) \cdot 1000/(m_A \cdot \rho \cdot \rho_0)]$$
(1)

where M and m_A are, respectively, the molar mass and the molality of amino acids, and ρ and ρ_0 are the densities of solution and the solvent, respectively.

The densities of solutions and apparent molar volumes of glycine, DL- α -alanine, DL- α -amino-*n*-butyric acid, L-valine, and L-leucine as a function of temperature and concentration of the amino acids in aqueous and in mixed aqueous solutions of zinc chloride are given in Table 1.

The uncertainties in $V_{2,\phi}$ resulting from various experimentally measured quantities have been calculated. It comes out to be $0.003 \cdot 10^{-6}$ at high and $0.039 \cdot 10^{-6}$ m³·mol⁻¹ at low concentration of amino acids in water as well as cosolute solutions over the studied temperature range.

The apparent molar volume data were found to be adequately represented by the linear equation

$$V_{2,\phi} = V_2^0 + S_{\rm v} m \tag{2}$$

where V_2^0 is the apparent molar volume at infinite dilution and it has the same meaning as that of the standard partial molar volume, and S_v is the experimental slope. The V_2^0 values along with standard deviations are summarized in Table 2. The V_2^0 values of amino acids in water agree well with literature data.^{16–20}

Partial molar volumes of transfer, $\Delta_t V^0$ at infinite dilution from water to aqueous $ZnCl_2$ solutions have been calculated as follows

$$\Delta_{t}V^{0} = V_{2}^{0} \text{ (in aqueous ZnCl}_{2} \text{ solutions)} - V_{2}^{0} \text{ (in water)}$$
(3)

ZnCl₂, being a salt of strong acid and weak base, undergoes hydrolysis and gives acidic solutions. The measured values of pH of aqueous solutions of ZnCl₂ are 6.60, 5.72, 5.32, and 5.22 at $(0.1, 0.5, 1.0, \text{ and } 1.5) \text{ mol} \cdot \text{kg}^{-1}$. As ZnCl₂ aqueous solutions

Table 1. Densities, ρ , and Apparent Molar Volumes, $V_{2\gamma\phi\gamma}$ of Some Amino Acids in Water and in Aqueous ZnCl₂ Solutions as a Function of Concentration of Amino Acids and ZnCl₂ from T = (288.15 to 318.15) K

		1/K -	<i>T</i> /K = 288.15						
m _A	$\rho \cdot 10^{-3}$	$V_{2,\phi} \cdot 10^{6}$	M	$\rho \cdot 10^{-3}$	$V_{2,\phi} \cdot 10^{6}$				
$(\text{mol} \cdot \text{kg}^{-1})$	$(\text{kg} \cdot \text{m}^{-3})$	$(m^3 \cdot mol^{-1})$	$(mol \cdot kg^{-1})$	$(\text{kg} \cdot \text{m}^{-3})$	(m ³ ·mol ⁻¹				
		Glycine	in Water						
0.07326	1.001512	42.45	0.28243	1.008213	42.53				
0.14584	1.003852	42.49	0.32774	1.009639	42.56				
0.23257	1.006629	42.51	0.43706	1.013065	42.60				
		Glycine in Aqueo	ous ZnCl ₂ Solutions						
		$a_m = 0.1 \text{ mol} \cdot kg$	$^{-1}(^{b}o = 1.011641)$						
0.04442	1.012656	$m_{\rm s} = 0.1$ mor kg	$(p_0 - 1.0110+1)$	1.022422	1166				
0.00005	1.015050	44.37	0.30244	1.022425	44.00				
0.13040	1.015570	44.59	0.39769	1.023439	44.70				
0.24609	1.019008	44.63	0.48260	1.025895	44.72				
		$m_{\rm s} = 0.5 \text{ mol} \cdot \text{kg}^{-1}$	$^{-1}(\rho_0 = 1.058861)$						
0.11002	1.061984	45.44	0.41810	1.070508	45.55				
0.22574	1.065224	45.48	0.50466	1.072842	45.58				
0.31256	1.067624	45.51	0.55541	1.074202	45.60				
0101200	11007021	$m = 10 \text{ mol} \cdot kg$	$^{-1}(a_{1} = 1.113881)$	1107 1202	10100				
0 10102	1 117020	$m_{\rm s} = 1.0$ mor kg	$(p_0 - 1.115001)$	1 125225	16 50				
0.12125	1.117020	40.39	0.44819	1.125255	40.50				
0.18534	1.118660	46.41	0.57973	1.128444	46.54				
0.31260	1.121875	46.45	0.62616	1.129550	46.57				
		$m_{\rm s} = 1.5 {\rm mol} \cdot {\rm kg}$	$^{-1}(\rho_0 = 1.160530)$						
0.05547	1.161833	47.19	0.43625	1.170513	47.29				
0 18617	1 164862	47.23	0 54264	1 172846	47 33				
0.33/35	1 168237	47.26	0.59038	1 173874	17.35				
0.55455	1.108237	47.20 DL C Alon	ing in Water	1.173874	47.50				
		DL-Q-Alali			~~ ~ ~ ~				
0.05564	1.000747	59.95	0.22567	1.005607	60.02				
0.10087	1.002052	59.97	0.31414	1.008092	60.05				
0.16819	1.003978	60.00	0.36431	1.009483	60.08				
		DL- α -Alanine in Aq $m = 0.1$	ueous $ZnCl_2$ Solutions						
0.06032	1.013282	61 30	0 20557	1 010537	61.48				
0.00032	1.013282	61.41	0.40429	1.019557	61.50				
0.10343	1.014444	01.41	0.40428	1.022362	01.50				
0.1/32/	1.016310	61.45	0.46157	1.023817	61.55				
		$m_{\rm s} = 0.5$	mol·kg						
0.05102	1.060093	62.53	0.29729	1.065890	62.63				
0.10376	1.061353	62.57	0.41255	1.068525	62.67				
0.19790	1.063578	62.60	0.44515	1.069257	62.69				
		$m_{\pi} = 1.0$	$mol \cdot kg^{-1}$						
0.05308	1 115007	63.10	0.29035	1 119809	63 10				
0.05598	1.115007	62.14	0.29055	1.119009	62.02				
0.10237	1.117051	03.14	0.37792	1.121350	05.22				
0.19284	1.11/851	63.16	0.46615	1.123253	63.25				
		$m_{\rm s} = 1.5$	mol•kg ¹						
0.04682	1.161328	64.06	0.36449	1.166555	64.16				
0.15673	1.163173	64.10	0.45462	1.167964	64.21				
0.26621	1.164976	64.12	0.52800	1.169106	64.23				
		$DI - \alpha - Amino - m - bu$	tyric Acid in Water		0				
0.04017	1 000525	74 64		1.009726	74.01				
0.04917	1.000525	/4.04	0.34/92	1.008/30	/4.81				
0.11882	1.002478	/4.70	0.45036	1.011457	74.84				
0.20732	1.004927	74.74	0.50298	1.012829	74.88				
0.26862	1.006597	74.78							
	DI	$L-\alpha$ -Amino- <i>n</i> -butyric Acid	l in Aqueous ZnCl ₂ Solution	ons					
0.04094	1.010070	$m_{\rm s} = 0.1$	0.26242	1.019544	75 70				
0.04984	1.012973	/5.69	0.26342	1.018544	/5./9				
0.10145	1.014340	75.72	0.32206	1.020030	75.83				
0.18582	1.016544	75.76	0.41816	1.022443	75.86				
		$m_{\rm s} = 0.5$	o mol∙kg ⁻¹						
0.05450	1.060121	76.66	0.19554	1.063313	76.74				
0 10848	1 061354	76.69	0 28784	1 065354	76 78				
0.14625	1.062207	76.72	0.27956	1.067225	76.70				
0.14023	1.002207	$m_{-} = 1.0$	$mol \cdot kg^{-1}$	1.00/323	/0.01				
0.05367	1,114899	77.20	0.34119	1.120160	77.29				
0 12057	1 116210	77.20	0.45087	1 120100	22 PT				
0.12751	1.110317	11.22	0.50240	1.122003	11.55				
0.24091		11/0	0.50749	1.122903	//.36				
0.24081	1.118558	11.20	1 1 -1						
0.24081	1.118558	$m_{\rm s} = 1.5$	mol·kg ⁻¹						
0.24081 0.04687	1.161201	$m_{\rm s} = 1.5$ 78.17	$6 \text{ mol} \cdot \text{kg}^{-1}$ 0.30925	1.164810	78.27				

give a large amount of gelatinous white precipitate, which was presumably zinc hydroxide and zinc oxychloride, it is common to clear the turbid solutions by acidifying until the precipitate disappears. The pH values upon acidification of $ZnCl_2$ are 6.40, 5.52, 5.11, and 5.00 at (0.1, 0.5, 1.0, and 1.5) mol·kg⁻¹,

respectively. Thus, upon acidification of the $ZnCl_2$ aqueous solutions, the pH changed by only about 0.2 units which is almost negligible. At the maximum concentration of the $ZnCl_2$ solutions ($m_s = 1.5 \text{ mol} \cdot \text{kg}^{-1}$), a decrease in pH values from 5.00 to 4.12 has been observed upon the addition of the amino

m _A	$\rho \cdot 10^{-3}$	$V_{2,\phi} \cdot 10^6$		$\rho \cdot 10^{-3}$	$V_{2,\phi} \cdot 10^6$
$(\text{mol} \cdot \text{kg}^{-1})$	$\overline{(\text{kg} \cdot \text{m}^{-3})}$	$(m^3 \cdot mol^{-1})$	$(\text{mol} \cdot \text{kg}^{-1})$	$(\text{kg} \cdot \text{m}^{-3})$	$(m^3 \cdot mol^{-1})$
0.21503	1.163544	78.23	0.47731	1.167005	78.33
0.01605	0.000562	L-Valine	in Water	1.000246	00.17
0.01003	0.999303	90.09	0.04134	1.000240	90.17
0.02010	0.999855	90.12	0.04841	1.000429	90.19
0.03552	1.000085	90.15 L Valina in Aquas	0.05/51	1.000658	90.20
		m = 0.1	mol· kg^{-1}		
0.01202	1.011946	90.92	0.04359	1.012739	91.05
0.02234	1.012207	90.95	0.05747	1.013084	91.09
0.03382	1.012495	91.00	0.06618	1.013300	91.11
0.03302	1.012195	$m_c = 0.5$	$mol \cdot kg^{-1}$	1.015500	,,,,,,
0.01369	1.059150	91.72	0.05399	1.059991	91.83
0.02040	1.059291	91.74	0.06512	1.060220	91.86
0.03039	1.059500	91.78	0.06876	1.060294	91.88
		$m_{\rm s} = 1.0$	$mol \cdot kg^{-1}$		
0.01413	1.114109	92.08	0.03601	1.114458	92.17
0.02045	1.114211	92.10	0.04420	1.114586	92.21
0.02832	1.114336	92.14	0.05055	1.114685	92.24
		$m_{\rm s} = 1.5$	$mol \cdot kg^{-1}$		
0.01692	1.160708	93.06	0.04612	1.161008	93.17
0.02888	1.160833	93.09	0.05953	1.161144	93.20
0.03813	1.160928	93.13	0.06473	1.161194	93.23
		L-Leucin	e in Water		
0.01030	0.999379	106.84	0.03379	0.999945	106.95
0.01763	0.999557	106.86	0.04222	1.000146	106.97
0.02334	0.999694	106.90	0.04786	1.000279	107.02
0.02875	0.999824	106.93			
		L-Leucine in Aque	ous $ZnCl_2$ Solutions		
0.01120	1.011807	$m_{\rm s} = 0.1$	mol•kg	1.012567	107 52
0.01150	1.011097	107.42	0.04119	1.012307	107.55
0.02029	1.012099	107.40	0.04897	1.012739	107.57
0.03239	1.012375	m = 0.5	$mol \cdot k\sigma^{-1}$	1.012920	107.00
0 01144	1.059062	108 10	0.04163	1.059585	108.22
0.01979	1.059208	108.15	0.04980	1.059724	108.22
0.03022	1.059389	108.18	0.06315	1.059950	108.31
0.03022	1.057507	$m_{\rm e} = 1.0$	$mol \cdot kg^{-1}$	1.057750	100.51
0.02434	1.114155	108.61	0.05128	1.114449	108.72
0.03158	1.114234	108.64	0.06312	1.114577	108.74
0.04251	1.114355	108.67	0.06919	1.114643	108.75
		$m_{\rm s} = 1.5$	$mol \cdot kg^{-1}$		
0.02413	1.160656	109.07	0.04869	1.160776	109.19
0.03089	1.160689	109.12	0.05524	1.160806	109.23
0.03743	1.160721	109.16	0.06609	1.160857	109.27
		(T/K =	298.15)		
		Glycine	in Water		
0.07547	0.999434	43.39	0.30202	1.006469	43.50
0.15357	1.001881	43.42	0.34694	1.007838	43.53
0.25279	1.004960	43.46	0.45933	1.011252	43.56
		Glycine in Aqueo	us ZnCl ₂ Solutions		
		$^{a}m_{\rm s} = 0.1 \text{ mol} \cdot \text{kg}^{-1}$	$^{-1}(^{b}\rho_{0} = 1.009376)$		
0.11677	1.012715	46.15	0.46809	1.022506	46.24
0.19879	1.015033	46.18	0.66300	1.027786	46.27
0.29186	1.017652	46.16	0.78829	1.031105	46.32
		$m_{\rm s} = 0.5 {\rm mol} \cdot {\rm kg}^2$	$^{-1}(\rho_0 = 1.055445)$		
0.10403	1.058242	46.86	0.56213	1.070148	46.99
0.36099	1.065010	46.91	0.67266	1.072919	47.03
0.39549	1.065916	46.89	0.67684	1.073019	47.04
0 45605	1.067467	46.93			
0110000		10 1 1	$^{-1}(a = 1.106551)$		
0110000		$m_{c} = 1.0 \text{ mol} \cdot \text{kg}$	$(p_0 - 1.100331)$		
0.13249	1,109796	$m_{\rm s} = 1.0 \text{ mol} \cdot \text{kg}$ 47.70	$(\rho_0 = 1.100331)$ 0.44819	1,117311	47.77
0.13249 0.18543	1.109796	$m_{\rm s} = 1.0 \text{ mol} \cdot \text{kg}$ 47.70 47.67	$(p_0 = 1.100331)$ 0.44819 0.57973	1.117311	47.77 47 84

acids. At low concentration, zinc chloride seems to behave as a 2:1 electrolyte, indicating the presence of the ZnCl^+ or ZnCl_3^- species.²¹ Their conductance behavior shows that there is no appreciable complex formation in ZnCl₂ at low concentration (< 0.1 M), but at high concentration (> 1 M), complex formation takes place.²¹ The pH values for ternary mixtures are

greater than the pK_1 (COOH) and less than the pK_2 (NH₂) values of the studied amino acids. Thus, the amino acids mainly exist in zwitterionic form in water as well as aqueous ZnCl₂ solutions. However, if we consider the solutions as an equilibrium mixture of the zwitterionic and protonated forms, for a particular pH, the hydrogen ion [H⁺] concentrations can be used to obtain the

		T/K =	298.15		
m _A	$\rho \cdot 10^{-3}$	$V_{2,\phi} \cdot 10^{6}$	m _A	$\rho \cdot 10^{-3}$	$V_{2,\phi} \cdot 10^{6}$
$(\text{mol} \cdot \text{kg}^{-1})$	$(\text{kg} \cdot \text{m}^{-3})$	$\overline{(m^3 \cdot mol^{-1})}$	$(\text{mol} \cdot \text{kg}^{-1})$	$(\text{kg} \cdot \text{m}^{-3})$	$(m^3 \cdot mol^{-1})$
-	-	$m = 1.5 \text{ mol} \cdot \text{kg}^{-1}$	$^{-1}(\rho_0 = 1.152820)$	-	
0.08772	1.154756	48.43	0.43625	1.162245	48.47
0.22742	1.157793	48.46	0.61351	1.165859	48.58
0.33435	1 160074	48.49	0.64155	1 166416	48.60
0.00100	1.100071	10.15		1.100110	10.00
0.05502	0.000(50	DL-α-Alani	ne in Water	1.005055	(0.(1
0.05593	0.998652	60.40	0.31414	1.005855	60.61
0.101/3	0.999953	60.44	0.36909	1.00/348	60.65
0.17055	1.001892	60.48 60.52	0.44962	1.009525	00.08
0.22028	1.003445	00.35	agus 7nCl Solutions		
		m = 0.1	mol ka^{-1}		
0.05684	1.010868	$m_{\rm s} = 0.1$	0.42365	1.020200	62 51
0.00084	1.010808	62.43	0.53484	1.020200	62.48
0.09900	1.011982	62.45	0.63752	1.022907	62.40
0.21909	1.013070	m = 0.5	$mol \cdot kg^{-1}$	1.023423	02.50
0.09675	1.057696	$m_{\rm s} = 0.3$	0 38125	1.064123	63.46
0.09075	1.060444	63.42	0.45968	1.065836	63 49
0.25037	1.061/08	63.41	0.60593	1.068075	63 55
0.20701	1.001700	m = 1.0	$mol \cdot kg^{-1}$	1.000775	05.55
0.09382	1.108392	64 38	0 47064	1.115487	64 48
0.15553	1.109584	64 41	0.55102	1,116923	64 53
0.29949	1.112338	64.39	0.72149	1.119939	64.58
0.40998	1.114391	64.44	0.72112		01.00
0110770		$m_c = 1.5$	$mol \cdot kg^{-1}$		
0.09583	1.154340	65.26	0.37919	1.158660	65.36
0.17965	1.155646	65.28	0.43456	1.159497	65.34
0.23392	1.156494	65.25	0.63443	1.162346	65.44
		DL- α -Amino- <i>n</i> -but	vric Acid in Water		
0.05001	0.998427	75.54	0.35993	1.006688	75.73
0.12090	1.000359	75.59	0.46996	1.009506	75.79
0.20922	1.002733	75.64	0.52310	1.010840	75.83
0.27551	1.004485	75.68			
	D	L-α-Amino-n-butyric Acid	in Aqueous ZnCl ₂ Solutio	ns	
		$m_{\rm s} = 0.1$	mol·kg ⁻¹		
0.05326	1.010730	77.07	0.20617	1.014544	77.14
0.08257	1.011469	77.10	0.29239	1.016652	77.16
0.10801	1.012111	77.08	0.48026	1.021135	77.21
		$m_{\rm s} = 0.5$	$mol \cdot kg^{-1}$		
0.05786	1.056705	78.04	0.23719	1.060516	78.12
0.10440	1.057707	78.07	0.33368	1.062511	78.15
0.14952	1.058677	78.04	0.48931	1.065633	78.24
0.16918	1.059094	78.05			
		$m_{\rm s} = 1.0$	$mol \cdot kg^{-1}$		
0.05790	1.107549	79.03	0.27931	1.111252	79.09
0.11766	1.108564	79.06	0.39199	1.113071	79.12
0.16203	1.109315	79.04	0.48025	1.114472	79.14
0.23294	1.110493	79.07	0.52034	1.115082	79.17
		$m_{\rm s} = 1.5$	$mol \cdot kg^{-1}$		
0.05530	1.153518	79.89	0.23103	1.155660	79.99
0.07459	1.153759	79.90	0.31198	1.156620	80.00
0.12394	1.154367	79.94	0.35030	1.157083	79.98
0.17983	1.155046	79.97			
		L-Valine	in Water		
0.01627	0.997478	90.76	0.04207	0.998155	90.86
0.02615	0.997738	90.81	0.05513	0.998496	90.88
0.03594	0.997995	90.84	0.06596	0.998777	90.90
		L-Valine in Aqueom $m_{\pi} = 0.1$	bus $ZnCl_2$ Solutions mol·kg ⁻¹		
0.02873	1.010082	91.82	0.05513	1.010724	91.88
0.03927	1.010338	91.82	0.06596	1.010986	91.90
	1.010404	91.91	0.07704	1.011251	91.95
0.04573	1.010494	/ * • / *		· · · · · · · ·	
0.04573	1.010494	$m_{\rm c} = 0.5$	$mol \cdot kg^{-1}$		
0.04573	1.056049	$m_{\rm s} = 0.5$ 92.81	$mol \cdot kg^{-1}$ 0.06928	1.056830	92.88
0.04573 0.03000 0.03869	1.056049 1.056223	$m_{\rm s} = 0.5$ 92.81 92.84	$mol \cdot kg^{-1}$ 0.06928 0.08109	1.056830 1.057061	92.88 92.92

concentration of zwitterionic and protonated forms. In the extreme case of neutralization of all [H⁺] ions by the amino acids, the molarities of zwitterionic forms change from 1 to 8 units at the fifth decimal place, which results in a change in V_2^0

values by $0.02 \text{ cm}^3 \cdot \text{mol}^{-1}$. This is within uncertainty limits of the measurements, so the effect of pH can be neglected. Thus, partial molar volumes result from the zwitterionic forms of amino acids.

M	$\rho \cdot 10^{-3}$	$V_{2,\phi} \cdot 10^{6}$	m _A	$\rho \cdot 10^{-3}$	$V_{2,\phi} \cdot 10^6$
$(\text{mol} \cdot \text{kg}^{-1})$	$(\text{kg} \cdot \text{m}^{-3})$	$(m^3 \cdot mol^{-1})$	$(\text{mol} \cdot \text{kg}^{-1})$	$(\text{kg} \cdot \text{m}^{-3})$	$(m^3 \cdot mol^{-1})$
0.06104	1.056668	92.86			
0.00705	1 10/050	$m_{\rm s} = 1.0$	$mol \cdot kg^{-1}$	1 107201	02.00
0.02725	1.106952	93.77	0.05741	1.107391	93.80
0.03535	1.10/069	93.81	0.07067	1.10/5//	93.88
0.04759	1.107249	93.79	0.07731	1.107669	93.92
0.03458	1 153140	$m_{\rm s} = 1.3$	0.06184	1 153385	94.65
0.03438	1.152204	94.59	0.00184	1.155565	94.05
0.04191	1.153204	94.03	0.07399	1.153480	94.73
0.05451	1.153321	94.62	0.07837 in Water	1.153527	94.73
0.01051	0 997295	107 76	0.03474	0 997858	107 91
0.01700	0.997/69	107.85	0.04395	0.998071	107.94
0.01777	0.997409	107.83	0.04975	0.008181	107.04
0.02931	0.997733	107.86	0.04875	0.990101	107.97
		I-Leucine in Aque	ous ZnCl. Solutions		
		$m_c = 0.1$	mol·kg ⁻¹		
0.01123	1.009623	108.29	0.06599	1.010813	108.35
0.02200	1.009859	108.30	0.07001	1.010899	108.37
0.02931	1.010018	108 31	0.09920	1 011523	108 41
0.03248	1.010087	108.32	0.09920	1.011525	100.11
		$m_{\rm s} = 0.5$	$mol \cdot kg^{-1}$		
0.02464	1.055858	109.13	0.07975	1.056761	109.27
0.04929	1.056266	109.18	0.08481	1.056846	109.24
0.05530	1.056363	109.21	0.09804	1.057053	109.32
0.05886	1.056424	109.19	0.09001	1.057055	109.52
		$m_{\rm s} = 1.0$	$mol \cdot kg^{-1}$		
0.03100	1.106874	109.93	0.06193	1.107188	110.01
0.03845	1.106951	109.95	0.07191	1.107288	110.03
0.04910	1.107058	109.99	0.08923	1.107458	110.08
0.05861	1.107152	110.04			
		$m_{\rm s} = 1.5$	$mol \cdot kg^{-1}$		
0.00924	1.152863	110.25	0.04300	1.153011	110.37
0.02249	1.152924	110.23	0.06687	1.153116	110.36
0.04016	1.153003	110.28	0.07775	1.153157	110.43
		(T/K =	308.15)		
		Glycine	in Water		
0.07746	0.993053	43.83	0.30173	0.999939	43.93
0.15072	0.995322	43.86	0.34658	1.001291	43.97
0.25338	0.998473	43.90	0.45862	1.004653	44.00
		Glycine in Aqueo	us ZnCl ₂ Solutions		
		$a_{m_s} = 0.1 \text{ mol} \cdot \text{kg}^{-1}$	$^{-1}(^{b}\rho_{0} = 1.005927)$		
0.06666	1.007761	47.35	0.36244	1.015727	47.44
0.13040	1.009500	47.38	0.39769	1.016651	47.47
0.24609	1.012627	47.41	0.43611	1.017652	47.50
		$m_{\rm s} = 0.5 \text{ mol} \cdot \text{kg}^{-1}$	$(\rho_0 = 1.047950)$		
0.05247	1.049303	48.08	0.27804	1.054988	48.26
0.10056	1.050534	48.12	0.39769	1.057929	48.33
0.18412	1.052652	48.17	0.43611	1.058847	48.38
		$m_{\rm s} = 1.0 \text{ mol} \cdot \text{kg}$	$(\rho_0 = 1.097590)$		
0.05060	1.098768	49.02	0.31260	1.104697	49.21
0.13249	1.100651	49.08	0.44819	1.107681	49.25
0.18533	1.101842	49.16	0.57973	1.110495	49.34
		$m_{\rm s} = 1.5 \text{ mol} \cdot \text{kg}^{-1}$	$^{-1}(\rho_0 = 1.142537)$		
0.05053	1.143564	50.08	0.30050	1.148495	50.25
0.10486	1.144655	50.14	0.40299	1.150464	50.29
0.21551	1.146849	50.19	0.50561	1.152404	50.32
0.05765	0.0000	DL-α-Alani	ne in Water	0.0000.17	· · · · -
0.05765	0.992260	61.06	0.33370	0.999847	61.22
0.10610	0.993618	61.07	0.36909	1.000796	61.24
0.18686	0.995856	61.12	0.48750	1.003946	61.28
0.24133	0.997342	61.18			
		DL- α -Alanine in Aqu	eous ZnCl ₂ Solutions		
0.0(022	1 005 1/0	$m_{\rm s} = 0.1$	mol·kg ⁻¹	1 0 1 0 0 0 0	·· ·-
0.06032	1.007469	63.21	0.29557	1.013323	63.37
0.10343	1.008558	63.26	0.40428	1.015958	63.41

The V_2^0 values for the studied amino acids in aqueous solutions of zinc chloride are higher than the values in water, which result in positive $\Delta_t V^0$ values. The plots of $\Delta_t V^0$ values as a function of concentration of zinc chloride are shown in Figure 1. These

values increase with an increase of the molality of zinc chloride, and the increase is sharp in the lower concentration range. The transfer values also increase with temperature in all cases.

		T/K =	308.15		
m _A	$\rho \cdot 10^{-3}$	$V_{2,\phi} \cdot 10^{6}$	m _A	$\rho \cdot 10^{-3}$	$V_{2,\phi} \cdot 10^{6}$
$(\text{mol} \cdot \text{kg}^{-1})$	$(kg \cdot m^{-3})$	$(m^3 \cdot mol^{-1})$	$(mol \cdot kg^{-1})$	$(kg \cdot m^{-3})$	$(m^3 \cdot mol^{-1})$
0.17327	1.010308	63.30 m = 0.5	0.46157	1.017323	63.45
0.05401	1.049180	$m_{\rm s} = 0.3$ 64.20	0.29729	1.054562	64 36
0 10376	1 050299	64.26	0.41255	1.057037	64 40
0.19790	1.052389	64.32	0.44616	1.057744	64.42
		$m_{\rm s} = 1.0$	mol·kg ⁻¹		
0.05038	1.098559	65.15	0.26529	1.102554	65.34
0.14848	1.100414	65.21	0.32885	1.103699	65.39
0.20811	1.101522	65.25	0.39023	1.104786	65.43
0.05271	1 142252	$m_{\rm s} = 1.5$	mol·kg	1 147010	66.26
0.03271	1.145552	00.08	0.29917	1.14/010	00.20
0.10803	1.144203	00.13	0.40005	1.146349	00.30
0.20200	1.143398	00.24	0.49400 tvric Acid in Water	1.149770	00.55
0.05186	0.992026	76 58	0 35685	0 999947	76 75
0.03100	0.994002	76.50	0.55005	1.002299	76.75
0.12044	0.996164	76.00	0.50954	1.002255	76.81
0.27302	0.997812	76.72	0.50754	1.003754	70.01
	D	L- α -Amino- <i>n</i> -butyric Acid	in Aqueous ZnCl ₂ Solution	ns	
		$m_{\rm s} = 0.1$	mol·kg ⁻¹		
0.05192	1.007179	78.57	0.25717	1.012005	78.66
0.09378	1.008178	78.59	0.31476	1.013323	78.69
0.16712	1.009909	78.63	0.41890	1.015681	78.72
0.050/7	1.040150	$m_{\rm s} = 0.5$	mol·kg ⁻¹	1.055554	70.64
0.05867	1.049158	79.54	0.38127	1.055556	79.64
0.10374	1.050075	79.57	0.46190	1.05/088	79.67
0.20951	1.052195	/9.61 m = 1.0	0.55400	1.058809	/9./1
0.05554	1.008/85	$m_{\rm s} = 1.0$	0.21145	1 100020	80.58
0.05554	1.090250	80.48	0.28828	1.100929	80.50
) 15155	1.100001	80.55	0.34496	1.102946	80.65
0.10100	1.100001	$m_{\rm s} = 1.5$	$mol \cdot kg^{-1}$	1.102910	00.05
0.05028	1.143105	81.54	0.20946	1.144845	81.63
0.10051	1.143664	81.57	0.30471	1.145856	81.66
0.15804	1.144293	81.60	0.41629	1.147007	81.69
		L-Valine	in Water		
0.01502	0.991047	91.60	0.04346	0.991755	91.77
0.02637	0.991317	91.65	0.05081	0.991925	91.78
0.03597	0.991564	91.73	0.05769	0.992118	91.82
		L-value in Aqueo m = 0.1	molek a^{-1}		
0.02847	1.006607	$m_{\rm s} = 0.1$	0.04821	1.007070	02.87
0.02047	1.006831	92.75	0.05365	1.007070	02.07
0.03793	1.006095	92.83	0.05995	1.007170	92.92
	1.000775	$m_c = 0.5$	mol·kg ⁻¹	1.00/071	72.70
0.01369	1.048217	93.95	0.05399	1.048988	94.14
0.02039	1.048345	94.04	0.06512	1.049197	94.19
0.03039	1.048537	94.10	0.07106	1.049307	94.24
0.01005	1 000000	$m_{\rm s} = 1.0$	mol·kg ⁻¹	1 000055	~ · ~ -
0.01337	1.097780	94.86	0.04875	1.098273	94.99
0.02093	1.097886	94.91	0.06153	1.098448	95.04
0.03056	1.098021	94.96	0.06967	1.098557	95.08
0.01158	1 142641	$m_{\rm s} = 1.5$	0.04036	1 1/2801	05 74
0.01130	1.142041	95.01	0.04050	1.142091	93.14
0.02073	1.142/21	05 70	0.05079	1.142901	95.70
0.05072	1.142008	90.72 L-Leucin	e in Water	1.143042	95.81
0.01051	0.990878	108 44	0.03753	0 991503	108 61
0.01847	0.991063	108.49	0.04534	0.991682	108.64
0.02445	0.991201	108.55	0.05226	0.991830	108.67
0.03091	0.991351	108.56	0.03220	0.771037	100.07
	0.771001	L-Leucine in Aque	ous ZnCl ₂ Solutions		
		$m_{\rm e} = 0.1$	mol·kg ⁻¹		
0.01126	1.006166	109.33	0.04191	1.006807	109.49

It has been observed that the $\Delta_t V^0$ values vary almost linearly with concentration of cosolute after a 0.1 mol·kg⁻¹ ZnCl₂ concentration for all amino acids. It may also be noted that the behavior is more linear at low temperature, i.e., 288.15 K, than at the higher temperatures studied. These amino acids also do not show any saturation in $\Delta_t V^0$ values over the studied concentration range of cosolute. The $\Delta_t V^0$ values for the amino acids decrease with an increase in the hydrophobic part of the amino acids.

		T/K =	308.15		
m _A	$\rho \cdot 10^{-3}$	$V_{2,\phi} \cdot 10^{6}$	m _A	$\rho \cdot 10^{-3}$	$V_{2,\phi} \cdot 10^{6}$
$(\text{mol} \cdot \text{kg}^{-1})$	$\overline{(\text{kg} \cdot \text{m}^{-3})}$	$(m^3 \cdot mol^{-1})$	$(\text{mol} \cdot \text{kg}^{-1})$	$\overline{(\text{kg} \cdot \text{m}^{-3})}$	$(m^3 \cdot mol^{-1})$
0.02274	1.006408	109.37	0.05294	1.007035	109.53
0.03141	1.006589	109.43	0.06244	1.007229	109.57
		$m_{\rm s} = 0.5$	mol·kg ⁻¹		
0.01141	1.048137	110.17	0.04163	1.048624	110.30
0.01979	1.048273	110.21	0.04980	1.048752	110.36
0.03033	1.048443	110.25 m = 1.0	0.06312	1.048957	110.46
0.02431	1.007836	$m_{\rm s} = 1.0$	0.05128	1.008007	111 10
0.02451	1.097830	111.00	0.06312	1.0982097	111.19
0.04251	1.098014	111.12	0.06912	1.098267	111.24
0101201	11070011	$m_{\rm e} = 1.5$	$mol \cdot kg^{-1}$	11070201	111120
0.01235	1.142583	111.91	0.03427	1.142660	111.99
0.01859	1.142605	111.95	0.04537	1.142697	112.02
0.02835	1.142639	111.97	0.05946	1.142745	112.05
		(T/K) =	318.15)		
0.07020	0.000/(5	Glycine	in Water	0.000(70	11.00
0.07830	0.992665	44.17	0.30906	0.999679	44.26
).15253	0.994942	44.19	0.36556	1.001362	44.30
0.25640	0.998095	44.24 m = 0.1 moleka ⁻	$(0.48090)^{-1}$	1.004790	44.31
06666	1 003811	$m_{\rm s} = 0.1 \text{mor-kg}$ 48.24	$(\nu_0 = 1.002051)$ 0.45384	1 013830	18 15
) 13040	1.005497	48.24	0.45304	1.015501	40.43
0.24609	1.008520	48.34	0.52005	1.016113	48.48
0.36244	1.011514	48.40	0.51115	1.010115	10.10
		$m_c = 0.5 \text{ mol} \cdot \text{kg}^-$	$\rho_0 = 1.043286$		
0.05313	1.044603	49.12	0.39549	1.052867	49.25
0.10403	1.045854	49.16	0.45605	1.054282	49.28
).36099	1.052060	49.21	0.56213	1.056755	49.31
		$m_{\rm s} = 1.0 \text{ mol} \cdot \text{kg}^{-1}$	$(\rho_0 = 1.090831)$		
).06448	1.092258	50.15	0.31260	1.097616	50.26
0.13249	1.093747	50.19	0.44819	1.100475	50.29
0.18533	1.094891	50.22	0.54311	1.102439	50.32
0.00772	1 12(0(2	$m_{\rm s} = 1.5 \text{ mol} \cdot \text{kg}$	$\rho_0 = 1.135272$	1 1 10 1 (0	51.10
0.08772	1.136963	51.09	0.43625	1.143463	51.19
).22/43	1.139013	51.12	0.61351	1.140049	51.23
5.55455	1.141.377	DI-Q-Alani	ne in Water	1.14/23/	51.25
0.06060	0.991936	61 38	0 33495	0 999401	61.52
) 10686	0.993217	61.41	0.37153	1.000364	61.56
0.18752	0.995427	61.46	0.49036	1.003484	61.61
).24197	0.996902	61.49			
		DL-α-Alanine in Aqu	eous ZnCl ₂ Solutions		
		$m_{\rm s} = 0.1$	mol·kg ⁻¹		
0.06032	1.003526	64.13	0.29557	1.009212	64.25
0.10343	1.004584	64.16	0.40428	1.011/66	64.30
).1/32/	1.006279	64.22	0.51845	1.014408	64.34
		$m_{\rm s} = 0.5$	mol•kg ⁻¹		
0.06305	1.044676	65.06	0.40135	1.051860	65.23
).12439	1.046010	65.10	0.50055	1.053889	65.27
).20495	1.047742	65.14	0.52068	1.054305	65.26
0.30372	1.049837	00.1/ m = 1.0	mol·kg ⁻¹		
07966	1 092307	$m_{\rm s} = 1.0$	0 30260	1 097800	66.13
) 15553	1 093691	66.04	0.44654	1 098808	66 17
).29949	1.096262	66.10	0.54526	1.100489	66.20
		$m_s = 1.5$	mol·kg ⁻¹		00.20
).05406	1.136065	67.05	0.38919	1.140768	67.19
).14831	1.137425	67.09	0.50356	1.142309	67.22
).27375	1.139194	67.13	0.56692	1.143118	67.27
		DL-a-Amino-n-but	yric Acid in Water		
0.05233	0.991639	76.82	0.35685	0.999509	76.92
0.12654	0.993596	76.84	0.45112	1.001860	76.95
0.21116	0.995796	76.87	0.51084	1.003326	76.98
0.27302	0.997382	75.90			
	D	L- α -Amino- <i>n</i> -butyric Acid	in Aqueous ZnCl ₂ Solutio	ns	
0.05102	1.002070	$m_{\rm s} = 0.1$	mol•kg	1.000020	70.10
J.US192) 10738	1.003270	79.03	0.25/1/	1.008030	79.18
0.10/30	1.004378	79.07	0.514/0	1.009329	19.22
0.16717					(N /)

In the presently studied (amino acids $+ ZnCl_2 + water)$ ternary systems, the following types of interactions may occur; (1) ion—ion interactions between the Zn^{2+} and Cl^{-} ions of the cosolute and zwitterionic (COO⁻, NH₃⁺) groups; (2) ion—nonpolar

group interactions occurring between ions of cosolute and the nonpolar group of amino acids. According to the cosphere overlap model,²² the overlap of the cosphere of an ion with that of a hydrophobic group always results in a negative $\Delta_t V^0$

		<i>T</i> /K =	= 318.15		
m _A	$\rho \cdot 10^{-3}$	$V_{2,\phi} \cdot 10^{\circ}$	M	$\rho \cdot 10^{-3}$	$V_{2,\phi} \cdot 10^{\circ}$
$(\text{mol} \cdot \text{kg}^{-1})$	$(\text{kg} \cdot \text{m}^{-3})$	$(m^3 \cdot mol^{-1})$	$(\text{mol} \cdot \text{kg}^{-1})$	$(\text{kg} \cdot \text{m}^{-3})$	$(m^3 \cdot mol^{-1})$
		$m_{\rm s} = 0.5$	mol·kg ⁻¹		
0.05185	1.044340	80.06	0.22242	1.047719	80.17
0.10688	1.045446	80.09	0.34147	1.050012	80.21
0.15247	1.046350	80.12	0.40389	1.051188	80.24
0.05107	1.001/47	$m_{\rm s} = 1.0$	mol·kg '	1.00/0/1	01.17
0.05106	1.091647	81.03	0.33925	1.096064	81.16
0.13440	1.092956	81.07	0.38586	1.096742	81.20
0.25879	1.094866	81.11	1 1 -1		
0 00026	1 126262	$m_{\rm s} = 1.3$	0 24525	1 120014	92.14
0.08850	1.130202	82.03	0.34333	1.139014	62.14 82.10
0.12584	1.136672	82.08	0.42192	1.139784	82.19
0.28901	1.138430	82.11 L Velin	0.51902	1.140/5/	82.22
0.01602	0.990656	01.06	0.0/1383	0.001365	92.07
0.01002	0.990030	91.90	0.04383	0.001522	92.07
0.02057	0.990922	91.99	0.05001	0.991333	92.09
0.03019	0.991171	92.05 L Valine in Aque	0.05901	0.991749	92.10
		m = 0.1	$mol \cdot kg^{-1}$		
0 02847	1.002695	$m_{\rm s} = 0.1$ 93 57	0.04821	1 003147	93 70
0.02047	1.002055	03.62	0.05361	1.003270	03 73
0.03793	1.003074	93.65	0.05501	1.005270	95.15
0101191	1000071	$m_{c} = 0.5$	$mol \cdot kg^{-1}$		
0.01983	1.043668	94.52	0.04979	1.044234	94.67
0.03000	1.043861	94.58	0.06104	1.044444	94.71
0.03869	1.044025	94.63	0.06928	1.044595	94.76
		$m_{\rm s} = 1.0$) mol·kg ⁻¹		
0.02725	1.091216	95.43	0.05741	1.091631	95.56
0.03535	1.091329	95.48	0.06391	1.091719	95.60
0.04759	1.091497	95.53	0.07399	1.091856	95.62
		$m_{\rm s} = 1.5$	$mol \cdot kg^{-1}$		
0.01745	1.135425	96.35	0.04382	1.135648	96.46
0.02188	1.135462	96.38	0.05108	1.135708	96.49
0.03319	1.135558	96.43	0.05783	1.135763	96.52
		L-Leucin	e in Water		
0.01048	0.990480	109.39	0.03752	0.991082	109.51
0.01881	0.990667	109.41	0.04561	0.991262	109.52
0.02437	0.990791	109.43	0.05191	0.991401	109.53
0.03010	0.990918	109.47			
		L-Leucine in Aque	$ZnCl_2$ Solutions		
0.01126	1.002261	$m_{\rm s} = 0.1$	mol•kg	1.002070	110.50
0.01126	1.002261	110.48	0.04191	1.002879	110.59
0.02274	1.002494	110.51	0.05294	1.003098	110.64
0.03141	1.002669	110.54	0.06244	1.003287	110.67
0.01766	1 0/2560	$m_{\rm s} = 0.3$	0.04447	1 0/2066	111 54
0.01/00	1.043300	111.40	0.05452	1.043900	111.54
0.02080	1.043099	111.4/	0.05452	1.044118	111.56
0.03433	1.043816	111.51	0.06188	1.044226	110.61
0.02434	1.001054	$m_{\rm s} = 1.0$	0.05120	1 001202	112 57
0.02434	1.091034	112.40	0.05120	1.091293	112.37
0.03138	1.091118	112.31	0.00012	1.091390	112.01
0.04231	1.091210	112.33 $m = 1.5$	0.00905 6 mol•kg ⁻¹	1.091440	112.04
0 02589	1 135341	$m_{\rm s} = 1.2$ 113 40	0.05028	1 135401	113 48
0.03056	1 135352	113.43	0.06035	1 135423	113.50
0.04226	1 135382	113.45	0.00055	1.133743	115.52

^{*a*} m_s : molality (mol·kg⁻¹) of ZnCl₂ in water. ^{*b*} ρ_0 : density (kg·m⁻³) of ZnCl₂ in water.

value, and the overlap of cosphere of an ion with that of a hydrophilic group results in positive $\Delta_t V^0$ values. The presently observed positive $\Delta_t V^0$ values indicate the dominance of the ion—ion interactions, and these interactions further increase with an increase in the molality of ZnCl₂.

The modified equation of Shahidi and Farell²³ gives the limiting partial molar volume V_2^0

$$V_2^0 = V_{\rm vw} + V_{\rm void} - V_{\rm shrinkage} \tag{4}$$

where $V_{\rm vw}$ is the van der Waals volume; $V_{\rm void}$ is the volume associated with the void or empty space; and $V_{\rm shrinkage}$ is the

volume due to shrinkage that arises from the electrostriction of the solvent caused by the hydrophilic groups present in the solute. Assuming that V_{vw} and V_{void} are not significantly affected by the presence of ZnCl₂, a positive $\Delta_t V^0$ can therefore be attributed to a decrease in the shrinkage volume in the presence of the aqueous solution of ZnCl₂. Because of the stronger interactions between zwitterionic groups (COO⁻ and NH₃⁺) of the amino acids and ions of the cosolute (Zn²⁺, Cl⁻), noncovalent ion pairs will be formed and thus the electrostriction of neighboring water molecules due to these charged centers will be reduced, which result in the reduction of the volume of

Fable 2. Partial Molar Volumes	V_{2}^{0} , of Some Amino Acids in W	ater and in Aqueous ZnCl ₂ Solutions f	from $T = (288.15 \text{ to } 318.15) \text{ K}$
---------------------------------------	--	---	--

$V_2^{0} \cdot 10^6 (\mathrm{m}^3 \cdot \mathrm{mol}^{-1})$								
amino acids	$0.0^a m_s$	$0.1 m_{\rm s}$	0.5 m _s	1.0 m _s	1.5 m _s			
	<i>T</i> /K =	= 288.15						
glycine	$42.42^{b} \pm 0.01, 42.48^{c}, 42.40^{d}$	44.54 ± 0.01	45.40 ± 0.03	46.35 ± 0.03	47.17 ± 0.03			
DL- α -alanine	$59.93^b \pm 0.01, 59.67^c, 59.90^d$	61.37 ± 0.01	62.52 ± 0.01	63.09 ± 0.03	64.04 ± 0.03			
DL- α -amino- <i>n</i> -butyric acid	$74.63^b \pm 0.01, 74.67^{\ e}$	75.67 ± 0.01	76.64 ± 0.01	77.18 ± 0.01	78.15 ± 0.03			
L-valine	$90.05^b \pm 0.01, 90.08^c$	90.88 ± 0.01	91.69 ± 0.02	92.01 ± 0.01	93.00 ± 0.01			
L-leucine	$106.79^{b} \pm 0.01, 106.81^{f}$	107.37 ± 0.01	108.0 ± 0.02	108.54 ± 0.02	108.97 ± 0.01			
	T/K =	= 298.15						
glycine	$43.35^{b} \pm 0.01, 43.26^{c}, 43.30^{d}, 43.24^{g}$	46.12 ± 0.02	46.80 ± 0.03	47.62 ± 0.03	48.39 ± 0.03			
DL- α -alanine	$60.37^b \pm 0.01, 60.47^c, 60.49^g$	62.38 ± 0.02	63.35 ± 0.01	64.33 ± 0.03	65.21 ± 0.03			
DL-α-amino- <i>n</i> -butyric acid	$75.51^b \pm 0.01, 75.51^e, 76.35^g$	77.06 ± 0.01	78.00 ± 0.03	79.01 ± 0.01	79.89 ± 0.02			
L-valine	$90.74^{g} \pm 0.03, 90.80^{f}, 90.98^{g}$	91.78 ± 0.02	92.75 ± 0.02	93.69 ± 0.03	94.48 ± 0.03			
L-leucine	$107.64^{b} \pm 0.03, 107.73^{f}, 107.77^{g}$	108.27 ± 0.02	109.06 ± 0.02	109.86 ± 0.02	110.20 ± 0.04			
	T/K =	= 308.15						
glycine	$43.79^b \pm 0.01, 43.80^d, 43.79^f$	47.33 ± 0.02	48.04 ± 0.03	49.02 ± 0.03	50.08 ± 0.03			
DL- α -alanine	$61.02^b \pm 0.01, 60.90^d, 61.01^g$	63.19 ± 0.02	64.20 ± 0.01	65.09 ± 0.03	66.08 ± 0.03			
DL-α-amino- <i>n</i> -butyric acid	$76.59^b \pm 0.01, 76.61^g$	78.55 ± 0.01	79.53 ± 0.03	80.45 ± 0.01	81.53 ± 0.02			
L-valine	$91.52^b \pm 0.01, 91.55^g$	92.49 ± 0.02	93.93 ± 0.02	94.83 ± 0.03	95.58 ± 0.03			
L-leucine	$108.39^{b} \pm 0.01, 108.41^{g}$	109.27 ± 0.02	110.10 ± 0.02	110.87 ± 0.02	111.89 ± 0.04			
T/K = 318.15								
glycine	$44.14^b \pm 0.01, 44.17^g$	48.21 ± 0.01	49.11 ± 0.01	50.14 ± 0.03	51.06 ± 0.01			
DL- α -alanine	$61.35 \pm 0.01, 61.31^{g}$	64.12 ± 0.02	65.04 ± 0.01	65.98 ± 0.01	67.03 ± 0.01			
DL- α -amino- <i>n</i> -butyric acid	$76.80^b \pm 0.01, 76.82^g$	79.01 ± 0.01	80.04 ± 0.01	81.00 ± 0.01	82.02 ± 0.01			
L-valine	$91.90^{b} \pm 0.03, 91.93^{g}$	93.38 ± 0.02	94.44 ± 0.01	95.33 ± 0.03	96.29 ± 0.01			
L-leucine	$109.35^b \pm 0.03, 109.38^g$	110.43 ± 0.02	111.34 ± 0.02	112.38 ± 0.02	113.32 ± 0.01			

^a m_s: molality (mol·kg⁻¹) of ZnCl₂ in water. ^b Present work. ^c Ref 16. ^d Ref 17. ^e Ref 18. ^f Ref 19. ^g Ref 20.

Table 3. Pair, V_{XY} , and Triplet, V_{XYY} , Interaction Coefficients of Studied Amino Acids in Aqueous ZnCl₂ Solutions from T = (288.15 to 318.15) K

	$V_{\rm XY}$ · 10^6	$V_{\rm XYY}{f \cdot}10^6$	$V_{\rm XY}$ · 10^6	$V_{\rm XYY}{ullet}10^6$
amino acids	$(m^3 \cdot mol^{-2} \cdot kg)$	$\overline{(m^3 \cdot mol^{-2} \cdot kg^2)}$	$(m^3 \cdot mol^{-2} \cdot kg)$	$(m^3 \cdot mol^{-2} \cdot kg^2)$
	288.	15 K	298.	15 K
glycine	3.589 ± 1.198	-0.920 ± 0.605	4.215 ± 1.073	-1.117 ± 0.542
DL- α -alanine	2.629 ± 0.830	-0.498 ± 0.419	3.547 ± 1.073	-0.888 ± 0.542
DL- α -amino- <i>n</i> -butyric acid	2.144 ± 0.607	-0.453 ± 0.307	2.932 ± 0.827	-0.675 ± 0.417
L-valine	1.639 ± 0.545	-0.312 ± 0.27	2.330 ± 0.502	-0.492 ± 0.253
L-leucine	1.445 ± 0.215	-0.328 ± 0.221	1.732 ± 0.221	-0.397 ± 0.221
	308.	15 K	318.	15 K
glycine	5.172 ± 2.133	-1.419 ± 1.077	6.121 ± 2.428	-1.755 ± 1.225
DL- α -alanine	3.729 ± 1.243	-0.941 ± 0.627	4.381 ± 1.629	-1.147 ± 0.822
DL- α -amino- <i>n</i> -butyric acid	3.401 ± 1.118	-0.810 ± 0.564	3.809 ± 1.259	-0.953 ± 0.635
L-valine	2.734 ± 0.431	-0.629 ± 0.218	2.906 ± 0.800	-0.664 ± 0.404
L-leucine	1.835 ± 0.471	-0.312 ± 0.238	2.282 ± 0.534	-0.439 ± 0.269

shrinkage. This increases the apparent molar volume of the studied amino acids in the presence of ZnCl₂. A comparison of $\Delta_t V^0$ values of the studied amino acids in ZnCl₂ solutions at 298.15 K with the values in the presence of aqueous NaCl²⁴ and MgCl₂²⁵ shows that the order of decrease of $\Delta_t V^0$ values of the amino acids in the three cosolutes is as follows: MgCl₂ > ZnCl₂ > NaCl.

Transfer volumes $\Delta_t V^0$ of amino acids can also be expressed by the McMillan–Mayer theory²⁶ of solutions, which permit the formal separation of the effect due to interactions between the pair of solute molecules and those due to interactions between three or more solute molecules by the equation

$$\Delta_{\rm t} V^0 = 2V_{\rm XY} \cdot m_{\rm s} + 3V_{\rm XYY} \cdot m_{\rm s}^2 + \dots$$
 (5)

where X stands for amino acids and Y for $ZnCl_2$. V_{XY} and V_{XYY} are the volumetric pair and triplet interaction coefficients, respectively, and these are presented in Table 3.

 $V_{\rm XY}$ values are positive, whereas $V_{\rm XYY}$ values are negative in all cases. The large positive values of pair interaction coefficients suggest that interactions between amino acids and ZnCl₂ are mainly pairwise. These observations are in line with the conclusion drawn from the cosphere overlap model that solute-solute interactions dominate over solute-solvent interactions. The V_{XY} value decreases with an increase in the hydrophobic part, i.e., from glycine to L-leucine regularly, and increases with an increase in the temperature. The triplet interaction coefficients are negative for all amino acids and further decrease with an increase of temperature. As the interactions of zwitterionic end groups for different amino acids with ZnCl₂ are almost the same, this suggests that the alkyl side chain of amino acids plays an important role in modulating the volume of transfer and pair interaction coefficients. The amino acids with a longer hydrophobic alkyl side chain may undergo a stronger dehydration effect in the presence of ZnCl₂. As L-leucine has a longer alkyl chain, it will undergo a stronger dehydration effect and will give a smaller value of V_{XY} , whereas the reverse is true in the case of glycine which has a shorter alkyl chain.

The contribution of the relative weight of the pair and triplet interaction coefficients to $\Delta_t V^0$ may be better judged at various molalities of ZnCl₂ by plotting the contributions of the interaction coefficients versus m_s (plots of contributions of pair and triplet interaction coefficients versus m_s are shown in Figure 2). The relative weight for V_{XY} is positive and increases linearly

Table 4. Contribution to the Partial Molar Volumes, V_2^0 , from Zwitterionic End Groups (NH₃⁺, COO⁻), and Other Alkyl Side Chains of Some Amino Acids in Water and in Aqueous ZnCl₂ Solutions from T = (288.15 to 318.15) K

		$V_2^0 \cdot 10^6 (\text{m}^3 \cdot \text{mol}^-)$	-1)		
	$^{a}0.0 \ m_{s}$	0.1 m _s	0.5 m _s	1.0 m _s	1.5 m _s
		T/K = 288.15			
NH ₃ ⁺ , COO ⁻ -CH ₂ -CHCH ₃ -CHCH ₂ CH ₃ -CHCH(CH ₃) ₂	$\begin{array}{c} 27.11 \pm 0.83 \\ 15.89 \pm 0.25 \\ 31.78 \pm 0.35 \\ 47.67 \pm 0.43 \\ 63.56 \pm 0.50 \end{array}$	$\begin{array}{c} 29.42 \pm 0.87 \\ 15.52 \pm 0.26 \\ 31.04 \pm 0.33 \\ 46.56 \pm 0.40 \\ 62.08 \pm 0.46 \end{array}$	$\begin{array}{c} 30.52 \pm 0.87 \\ 15.45 \pm 0.26 \\ 30.90 \pm 0.37 \\ 46.35 \pm 0.45 \\ 61.80 \pm 0.52 \end{array}$	$\begin{array}{c} 31.44 \pm 0.85 \\ 15.33 \pm 0.26 \\ 30.66 \pm 0.37 \\ 45.99 \pm 0.45 \\ 61.32 \pm 0.52 \end{array}$	$\begin{array}{c} 32.50 \pm 0.79 \\ 15.26 \pm 0.24 \\ 30.52 \pm 0.34 \\ 45.78 \pm 0.42 \\ 61.04 \pm 0.48 \end{array}$
-CHCHCH ₂ (CH ₃) ₂	79.45 ± 0.56	$1/.60 \pm 0.51$	77.25 ± 0.58	76.65 ± 0.58	76.30 ± 0.54
		T/K = 298.15			
NH ₃ ⁺ , COO ⁻ -CH ₂ -CHCH ₃ -CHCH ₂ CH ₃ -CHCH(CH ₃) ₂ -CHCH(CH ₃) ₂ -CHCHCH ₂ (CH ₃) ₂	$\begin{array}{c} 27.84 \pm 0.68, 27.72^{b} \\ 15.90 \pm 0.20, 15.99^{b} \\ 31.80 \pm 0.28, 31.98^{b} \\ 47.70 \pm 0.35 \\ 63.60 \pm 0.40 \\ 79.50 \pm 0.45, 79.95^{b} \end{array}$	$\begin{array}{c} 31.82 \pm 0.67 \\ 15.37 \pm 0.19 \\ 30.74 \pm 0.27 \\ 46.11 \pm 0.33 \\ 61.48 \pm 0.38 \\ 76.85 \pm 0.42 \end{array}$	$\begin{array}{c} 31.82 \pm 0.67 \\ 15.39 \pm 0.20 \\ 30.78 \pm 0.28 \\ 46.17 \pm 0.35 \\ 61.56 \pm 0.40 \\ 76.95 \pm 0.45 \end{array}$	$\begin{array}{c} 32.75 \pm 0.70 \\ 15.38 \pm 0.21 \\ 30.76 \pm 0.30 \\ 46.14 \pm 0.36 \\ 61.52 \pm 0.42 \\ 76.90 \pm 0.47 \end{array}$	$\begin{array}{c} 33.77 \pm 0.73 \\ 15.29 \pm 0.22 \\ 30.58 \pm 0.31 \\ 45.87 \pm 0.38 \\ 61.16 \pm 0.44 \\ 76.45 \pm 0.49 \end{array}$
		T/K = 308.15			
NH ₃ ⁺ , COO ⁻ -CH ₂ -CHCH ₃ -CHCH ₂ CH ₃ -CHCH(CH ₃) ₂ -CHCH(CH ₃) ₂ -CHCHCH ₂ (CH ₃) ₂	$\begin{array}{c} 28.35 \pm 0.73 \\ 15.97 \pm 0.22 \\ 31.94 \pm 0.31 \\ 47.70 \pm 0.38 \\ 63.87 \pm 0.44 \\ 79.84 \pm 0.49 \end{array}$	$\begin{array}{c} 32.21 \pm 0.74 \\ 15.32 \pm 0.22 \\ 30.64 \pm 0.31 \\ 45.96 \pm 0.38 \\ 61.28 \pm 0.44 \\ 76.60 \pm 0.49 \end{array}$	$\begin{array}{c} 33.01 \pm 0.56 \\ 15.39 \pm 0.17 \\ 30.78 \pm 0.28 \\ 46.17 \pm 0.35 \\ 61.56 \pm 0.40 \\ 76.95 \pm 0.45 \end{array}$	$\begin{array}{c} 34.02\pm 0.50\\ 15.34\pm 0.21\\ 30.68\pm 0.30\\ 46.02\pm 0.36\\ 61.36\pm 0.42\\ 76.70\pm 0.47\end{array}$	$\begin{array}{c} 35.10 \pm 0.61 \\ 15.31 \pm 0.22 \\ 30.62 \pm 0.31 \\ 45.93 \pm 0.38 \\ 61.24 \pm 0.44 \\ 76.55 \pm 0.49 \end{array}$
		T/K = 318.15			
$\operatorname{NH}_{3}^{+}$, COO^{-} - CHZ_{3} - CHCH_{3} - $\operatorname{CHCH}_{2}\operatorname{CH}_{3}$ - $\operatorname{CHCH}(\operatorname{CH}_{3})_{2}$ - $\operatorname{CHCHCHCH}_{2}(\operatorname{CH}_{3})_{2}$	$\begin{array}{c} 28.42 \pm 0.75 \\ 16.10 \pm 0.20 \\ 31.80 \pm 0.28 \\ 48.29 \pm 0.35 \\ 64.39 \pm 0.40 \\ 80.49 \pm 0.45 \end{array}$	$\begin{array}{c} 32.92 \pm 0.75 \\ 15.37 \pm 0.19 \\ 30.68 \pm 0.27 \\ 46.05 \pm 0.33 \\ 61.36 \pm 0.38 \\ 76.73 \pm 0.42 \end{array}$	$\begin{array}{c} 33.84 \pm 0.69 \\ 15.39 \pm 0.20 \\ 30.78 \pm 0.28 \\ 46.17 \pm 0.35 \\ 61.56 \pm 0.40 \\ 76.95 \pm 0.45 \end{array}$	$\begin{array}{c} 34.82\pm0.73\\ 15.38\pm0.21\\ 30.76\pm0.30\\ 46.14\pm0.36\\ 61.52\pm0.42\\ 76.90\pm0.47 \end{array}$	$\begin{array}{c} 35.81 \pm 0.75 \\ 15.38 \pm 0.22 \\ 30.76 \pm 0.31 \\ 46.14 \pm 0.38 \\ 61.52 \pm 0.44 \\ 76.90 \pm 0.49 \end{array}$

^{*a*} m_s : molality (mol·kg⁻¹) of ZnCl₂ in water. ^{*b*} Ref 28.

with the increase in the molalities of ZnCl₂ in all cases. The relative weights for V_{XYY} are negative and almost zero up to $\sim 0.5 \text{ mol} \cdot \text{kg}^{-1}$ of cosolute; thereafter, these decrease sharply with the increase in the molalities of ZnCl₂ for the studied amino acids. The contribution of pair interaction coefficients V_{XYY} decreases, while triplet interaction coefficients V_{XYY} increase with an increase in the hydrophobic part of the amino acids.

A linear relationship has been observed between the V_2^0 of the amino acids and the number of carbon atoms, n_c , in their alkyl side chains which is represented²⁷ by

$$V_2^0 = V_2^0(\text{NH}_3^+, \text{COO}^-) + n_C V_2^0(\text{CH}_2)$$
(6)

where V_2^0 (NH₃⁺, COO⁻) and V_2^0 (CH₂) represent the zwitterionic end group and (CH₂) group contributions to V_2^0 , respectively. The calculated values for these contributions are summarized in Table 4.

The zwitterionic end group V_2^0 (NH₃⁺, COO⁻) and methylene group V_2^0 (CH₂) contributions, in water, agree well with literature values²⁸ (Table 4). The V_2^0 (NH₃⁺, COO⁻) group contribution for amino acids increases with an increase in the concentration of zinc chloride. The larger value of V_2^0 (NH₃⁺, COO⁻) in ZnCl₂ as compared to the value in water indicates that the interactions of the ions of ZnCl₂ with the zwitterionic end groups (NH₃⁺, COO⁻) of the amino acids are stronger and increase with the concentration of ZnCl₂.

The contributions of (NH_3^+, COO^-) groups and R groups $(R = -CH_2, -CHCH_3, -CHCH_2CH_3, -CHCH_2CH_2CH(CH_3)_2)$ to $\Delta_t V^0$ values of amino acids from water to aqueous ZnCl₂ solutions have been calculated using an equation analogous to eq 3 and depicted in Figure 3. The $\Delta_t V^0$ (NH_3^+ , COO^-) values are positive and increase sharply initially, and thereafter almost linear behavior is observed with increasing molality of ZnCl₂. The contributions of the R group to $\Delta_t V^0$ are negative and decrease slightly with an increase in the concentration of ZnCl₂ at all temperatures. Further, the negative contributions of R increase with an increase in the size of the nonpolar side chains of amino acids. As reported earlier,²⁸ the ratio of the effect of

hydrophilic to the hydrophobic hydration is reflected in the partial specific quantities, while the partial molar quantities are a reflection of the net change in both types of hydration. The molar specific volume v_2^0 ($v_2^0 = V_2^0/M$ where M is the molar mass of the amino acids) for the studied amino acids in aqueous $ZnCl_2$ solutions is illustrated in Figure 4. The v_2^0 values increase from glycine to L-leucine with the increase in the size of the side chain of amino acids, but it may noted that the increase in v_2^0 becomes smaller and smaller with the increase in the size of the nonpolar side chains of amino acids from glycine to L-leucine. The effect of $ZnCl_2$ concentration on v_2^0 is more in glycine, which further decreases with the increase of alkyl side chain of the amino acids. The v_2^0 values of L-leucine are almost independent of the concentration of ZnCl₂, because the positive effect of the interactions of the ions of ZnCl₂ with the zwitterionic end group of amino acids is compensated by the negative effect due to the interactions of the ions of ZnCl₂ with the nonpolar side chain of the amino acids.

The hydration $(n_{\rm H})$ for the amino acids has been calculated from the partial molar volumes V_2^0 by using the method reported by Millero et al.²⁹ The value of V_2^0 for the amino acids can be expressed²⁹ by

$$V_2^0 = V_2^0(\text{int}) + V_2^0(\text{elect})$$
(7)

where $V_2^0(\text{int})$ is the intrinsic partial molar volume of the amino acids and $V_2^0(\text{elect})$ is the electrostriction partial molar volume due to the hydration of amino acids. The $V_2^0(\text{int})$ further consists of two terms: van der Waals volume and volume due to a packing effect. Millero et al.²⁹ have obtained the values of $V_2^0(\text{int})$ for amino acids from their molar crystal volume by using the relationship³⁰

$$V_2^0(\text{int}) = (0.7/0.634)V_2^0(\text{cryst})$$
 (8)

where 0.7 is the packing density for the molecule in an organic crystal and 0.634 is the packing density for a random packing sphere. Millero et al.²⁹ reported a relationship between the

Figure 3. $\Delta_1 V^0$ (NH₃⁺, COO⁻)/ $\Delta_1 V^0$ (R) vs m_s : \blacklozenge , NH₃⁺, COO⁻; \blacksquare , $-CH_2$; \blacktriangle , CHCH₃; \times , $-CHCH_2CH_3$; +, $-CHCH(CH_3)_2$; \diamondsuit , $-CHCHCH_2(CH_3)_2$ at (a) 288.15 K; (b) 298.15 K; (c) 308.15 K; and (d) 318.15 K.

Figure 4. Partial specific volumes v_2^0 of some amino acids vs m_i : \blacklozenge , glycine; \blacksquare , DL- α -alanine; \blacktriangle , DL- α -amino-*n*-butyric acid; \times , L-valine; +, L-leucine at 298.15 K.

electrostriction volume and the hydration number of the nonelectrolyte as

$$V_{\rm elect} = n_{\rm H} (V_{\rm e}^0 - V_{\rm b}^0)$$
 (9)

where $V_{\rm e}^0$ is the molar volume of electrostricted water and $V_{\rm b}^0$ is

the molar volume of bulk water. For every water molecule taken from the bulk phase to the region near the amino acids, the volumes $(V_e^0 - V_b^0)$ are (-2.9, -3.3, and -4.0) cm³·mol⁻¹ at (288.15, 298.15, and 308.15) K, respectively.³¹ The $n_{\rm H}$ values calculated for amino acids are given in Table 5. The hydration numbers of the studied amino acids are less in the presence of ZnCl₂ as compared to their values in water, and with a further increase in concentration of ZnCl₂ the hydration numbers decrease. These observations suggest that the interactions involving the (Zn^{2+}, Cl^{-}) ions with the charged centers of amino acids are strong, which weakens the electrostriction effect of the charged centers of the amino acids and exerts a dehydration effect. In the case of more polar amino acids, there is a large decrease in hydration numbers with concentration of ZnCl₂, but as the hydrophobic part of amino acids increases, the decrease becomes progressively smaller. The hydration numbers of all amino acids decrease with an increase in temperature.

$\frac{{}^{a}m_{\rm s}}{({\rm mol}\cdot{\rm kg}^{-1})}$	n _H							
	288.15 K	298.15 K	308.15 K	288.15 K	298.15 K	308.15 K		
	glycine			DL-a-Alanine				
0.0	3.26 ± 0.01	2.58 ± 0.01	2.02 ± 0.01	4.08 ± 0.01	3.45 ± 0.01	2.68 ± 0.01		
0.1	2.53 ± 0.01	1.74 ± 0.02	1.14 ± 0.02	3.58 ± 0.01	2.84 ± 0.02	2.14 ± 0.02		
0.5	2.23 ± 0.03	1.54 ± 0.03	0.96 ± 0.03	3.18 ± 0.01	2.55 ± 0.01	1.89 ± 0.01		
1.0	1.90 ± 0.03	1.29 ± 0.03	0.71 ± 0.03	2.99 ± 0.03	2.25 ± 0.03	1.67 ± 0.03		
1.5	1.62 ± 0.03	1.05 ± 0.03	0.45 ± 0.03	2.66 ± 0.03	1.98 ± 0.03	1.42 ± 0.03		
	L-Valine			L- Leucine				
0.0	4.13 ± 0.01	3.42 ± 0.03	2.63 ± 0.01	5.94 ± 0.01	4.97 ± 0.03	3.91 ± 0.01		
0.1	3.84 ± 0.01	3.11 ± 0.02	2.39 ± 0.02	5.74 ± 0.01	4.78 ± 0.02	3.69 ± 0.02		
0.5	3.57 ± 0.02	2.82 ± 0.02	2.03 ± 0.02	5.51 ± 0.02	4.54 ± 0.02	3.23 ± 0.02		
1.0	3.46 ± 0.01	2.53 ± 0.03	1.80 ± 0.03	5.34 ± 0.02	4.29 ± 0.02	3.29 ± 0.02		
1.5	3.12 ± 0.01	2.29 ± 0.03	1.62 ± 0.03	5.19 ± 0.01	4.10 ± 0.04	3.04 ± 0.04		

^{*a*} m_s : molality (mol·kg⁻¹) of ZnCl₂ in water.

To study the effect of temperature on the interactions between the studied amino acids in zinc chloride, partial molar expansibilities $V_{\rm E}^0 [V_{\rm E}^0 = (\partial V_2^0 / \partial T_P)]$ and $(\partial^2 V_2^0 / \partial T^2)_P$ have been calculated by fitting the data using the method of least-squares into the following equation

$$V_2^0 = a + bT + cT^2 \tag{10}$$

where *a*, *b*, and *c* are constants and *T* is the temperature. Values of $(\partial V_2^0/\partial T)_P$ and $(\partial^2 V_2^0/\partial T^2)_P$ have been obtained by differentiating the above equation, and their values are summarized in Table 6. The V_E^0 values show a regular decrease in the partial molar expansibilities with an increase of temperature for all amino acids except for L-leucine, where the expansibilities increase regularly with temperature as well as with concentration.

The effect of concentration of ZnCl₂ on V_E^0 values does not follow any regular trend except for L-leucine. At low temperature, i.e., 288.15 K, the V_E^0 values increase initially for glycine, DL- α -alanine, and DL- α -amino-*n*- butyric acid. At 0.5 m_s the V_E^0 values decrease, and with further increase in concentration, the V_E^0 values again increase regularly. In the case of L-valine, V_E^0 does not follow any regular trend with concentration.

With a further increase of temperature, i.e., 308.15 K, for glycine, DL- α -amino-*n*-butyric acid, and L-valine, the $V_{\rm E}^0$ values increase regularly with concentration, but for DL- α -alanine, $V_{\rm E}^0$ does not follow any regular trend. At higher temperature, i.e., 318.15 K, no regular trend has been observed except for L-leucine.

Hepler³² proposed a method by which quantitative information on hydration of a solute can be obtained from thermal expansion of aqueous solutions by using the thermodynamic relation

$$(\partial C^{\circ}_{p,2}/\partial T)_{P} = -T(\partial^{2}V_{2}^{0}/\partial T^{2})_{P}$$
(11)

It has been suggested that for a structure breaking solute, the left side of the equation should be positive, and therefore $(\partial^2 V_2^0/\partial T^2)_P$ values should be negative for structure breaking and positive for structure making solutes. This equation is useful for making a distinction between ionic or polar solutes and those for which hydrophobic hydration is dominant. The presently obtained $(\partial^2 V_2^0/\partial T^2)_P$ values are negative for all amino acids, except L-leucine, which suggests that studied amino acids are structure breakers while L-leucine acts as structure maker in water as well as in aqueous ZnCl₂ solutions.

Conclusion

Partial molar volumes, V_2^0 , of glycine, DL- α -alanine, DL- α amino-n-butyric acid, L-valine, and L-leucine in aqueous and in mixed aqueous solutions of zinc chloride, (0.1, 0.5, 1.0, and 1.5) mol·kg⁻¹, have been determined at T = (288.15 to 318.15)K. From these data, transfer volumes, hydration numbers, and side chain contributions have been determined. The $\Delta_t V^0$ values are positive in all the cases, and these increase with an increase in the concentration of $ZnCl_2$ and temperature. V_{XY} values are positive, and V_{XYY} values are negative in all cases, which suggest that interactions between amino acids and ZnCl₂ are mainly pairwise. $n_{\rm H}$ values also decrease with concentration of ZnCl₂ and temperature. These parameters suggest that ion-ion interactions between charged ends of amino acids and ions of ZnCl₂ dominate over the ion-hydrophobic interactions in theses systems. The negative $(\partial^2 V_2^0 / \partial T^2)_P$ values for all amino acids, except L-leucine, suggest that studied amino acids are structure breakers while L-leucine acts as structure maker in water as well as in aqueous ZnCl₂ solutions.

Table 6. Partial Molar Expansibilities, $V_{\rm E}^0$, of Some Amino Acids in Water and in Aqueous ZnCl₂ Solutions from T = (288.15 to 318.15) K

^a m _s		$10^{-6} V_{\rm E}^0 ({\rm m}^3 \cdot {\rm r})$		$10^{-6} (\partial^2 V_2^0 / \partial T^2)_P$							
$(\text{mol} \cdot \text{kg}^{-1})$	288.15 K	298.15 K	308.15 K	318.15 K	^b SD	$(m^3 \cdot mol^{-1} \cdot K^{-2})$					
Glycine in Aqueous ZnCl ₂ Solutions											
0.0	0.099	$0.071, 0.063^{c}$	0.041	0.012	0.089	-0.0029					
0.1	0.175	0.140	0.105	0.070	0.009	-0.0035					
0.5	0.148	0.132	0.115	0.099	0.002	-0.0017					
1.0	0.239	0.184	0.129	0.074	0.121	-0.0056					
1.5	0.589	0.577	0.565	0.553	0.264	-0.0012					
DL- α -Alanine in Aqueous ZnCl ₂ Solutions											
0.0	0.057	$0.052, 0.062^{c}$	0.046	0.041	0.118	-0.0006					
0.1	0.097	0.093	0.089	0.085	0.071	-0.0004					
0.5	0.083	0.084	0.084	0.085	0.007	0.0001					
1.0	0.120	0.103	0.086	0.068	0.136	-0.0018					
1.5	0.121	0.110	0.099	0.088	0.085	-0.0011					
$DL-\alpha$ -Amino- <i>n</i> -butyric Acid in Aqueous ZnCl ₂ Solutions											
0.0	0.126	0.093	0.059	0.026	0.239	-0.0034					
0.1	0.185	0.138	0.092	0.045	0.252	-0.0047					
0.5	0.181	0.139	0.096	0.053	0.266	-0.0043					
1.0	0.225	0.161	0.097	0.033	0.111	-0.0064					
1.5	0.224	0.163	0.102	0.041	0.200	-0.0061					
L-Valine in Aqueous ZnCl ₂ Solutions											
0.0^{a}	0.087	$0.071, 0.080^{\circ}$	0.056	0.040	0.109	-0.0016					
0.1	0.083	0.082	0.082	0.081	0.083	-0.0001					
0.5	0.136	0.108	0.081	0.053	0.170	-0.0028					
1.0	0.200	0.141	0.082	0.023	0.020	-0.0059					
1.5	0.167	0.129	0.090	0.052	0.002	-0.0039					
L-Leucine in Aqueous ZnCl ₂ Solutions											
0.0^{a}	0.076	$0.082, 0.084^{\circ}$	0.087	0.093	0.069	0.0006					
0.1	0.082	0.095	0.108	0.121	0.134	0.0013					
0.5	0.091	0.103	0.115	0.127	0.036	0.0012					
1.0	0.111	0.121	0.130	0.140	0.181	0.0010					
1.5	0.132	0.142	0.153	0.162	0.161	0.0010					

^{*a*} $m_{\rm s}$: molality (mol·kg⁻¹) of ZnCl₂ in water. ^{*b*} SD: Standard deviation calculated using eq 10. ^{*c*} Ref 20.

Literature Cited

- Voet, D.; Voet, J. G. *Biochemistry*, 2nd ed.; John Wiley: New York, 1995.
- (2) Lapanje, S. Physicochemical Aspect of Protein Denaturation; Wiley: New York, 1978.
- (3) Franks, F.; Jones, M. N. Biochemical Thermodynamics; Elsevier: Amsterdam, 1979.
- (4) Badarayani, R.; Kumar, A. Effect of temperature on the volumetric properties of the L-alanine (1) + KCl (2) + H₂O (3) system. *J. Chem. Eng. Data* **2003**, *48*, 664–668.
- (5) Soto, A.; Arce, A.; Khoskbarchi, K. M. Effect of the cation and the anion of an electrolyte on the stability of DL-amino butyric acid in aqueous solutions: Measurement and Modeling. *Biophys. Chem.* 2002, 99, 199–207.
- (6) Banipal, T. S.; Kaur, D.; Banipal, P. K. Effect of sodium acetate and magnesium acetate on the solution behaviour of some amino acids in water at 288.15 K: a compressibility approach. Z. Phys. Chem. 2006, 220, 1049–1069.
- (7) Bhat, R.; Ahluwlia, J. C. Effect of calcium chloride on the conformation of proteins. Thermodynamic studies of some model compounds. *Int. J. Pept. Protein Res.* **1987**, *30*, 145–152.
- (8) Ogawa, T.; Kiyoshi, M.; Yasuda, M. The volume, adiabatic compressibility, and viscosity of amino acids in aqueous alkali chloride solutions. *Bull. Chem. Soc. Jpn.* **1984**, *57*, 2064–2068.
- (9) Banipal, T. S.; Kaur, D.; Banipal, P. K. Effect of magnesium acetate on the volumetric and transport behavior of some amino acids in aqueous solution at 298.15 K. J. Chem. Thermodyn. 2006, 38, 1214– 1226.
- (10) Mishra, A. P.; Gautam, S. K. Viscometric and volumetric studies of some transition metal chloride in glycine water solution. *Indian J. Chem.* 2001, 40A, 100–104.
- (11) Banipal, P. K.; Kaur, G.; Banipal, T. S. Partial molar volumes of transfer of some saccharides from water to aqueous cupric chloride and zinc chloride solutions at 298.15 K. *Indian J. Chem.* **2004**, *43A*, 35–40.
- (12) Miecznik, P.; Golebiewski, Z.; Mielcarek. Solvation of amides by zinc ions in pseudo-binary aqueous systems ultrasonic, densitometric and pH studies. *Fluid Phase. Equilib.* 2004, 221, 41–49.
- (13) Cotton, F. A.; Willkinson, G. Advanced inorganic chemistry, 5th ed.; John Wiley: New York, 1988.
- (14) Akhtar, Y. Volumetric and viscometric behaviour of some amino acids in aqueous metal electrolyte solutions at 308 K. *Fluid Phase Equilib.* 2007, 258, 125–130.
- (15) Archer, D. G. Thermodynamic properties of the sodium chloride + water system. Thermodynamic equilibria. J. Phys. Chem. Ref. Data 1992, 21, 793–829.
- (16) Hakin, A. W.; Duke, M. M.; Klassen, S. A.; McKay, R. M.; Preuss, K. E. Apparent molar heat capacities and volumes of some aqueous solutions of aliphatic amino acids at 288.15, 298.15, 313.15, and 328.15 K. Can. J. Chem. 1994, 72, 362–368.
- (17) Kharakoz, D. P. Volumetric properties of proteins and their analogs in diluted water solutions. Partial volumes of amino acids, at 15–55° C. *Biophys. Chem.* **1989**, *34*, 115–125.

- (18) Hakin, A. W.; Duke, M. M.; Marty, J. L.; Preuss, K. E. Apparent molar heat capacities and volumes of some aqueous solutions of aliphatic amino acids at 288.15, 298.15, 313.15, and 328.15 K. J. Chem. Soc., Faraday Trans. 1994, 362–368.
- (19) Duke, M. M.; Hakin, A. W.; McKay, R. M.; Preuss, K. E. The volumetric and thermochemical properties of aqueous solutions of L-valine, L-leucine, and L-isoleucine at 288.15, 298.15, 313.15, and 328.15 K. Can. J. Chem. 1994, 72, 1489–1494.
- (20) Banipal, T. S.; Kapoor, P. Partial molal volumes and expansibilities of some amino acids in aqueous solution. J. Indian Chem. Soc. 1999, 76, 431–437.
- (21) Weingaertner, H.; Mueller, K. J.; Hertz, H. G.; Edge, A. V. J.; Mills, R. Unusual behavior of transport coefficients in aqueous solutions of zinc chloride at 25 °C. J. Phys. Chem. **1984**, 88, 2173–2178.
- (22) Gurney, R. W. *Ionic Process in solution*; McGraw Hill: New York, 1953.
- (23) Shahidi, F.; Farrell, P. G. Partial molar volumes of some aminocarboxylic acid in water. J. Chem. Soc., Faraday Trans. 1981, 77, 963–968.
- (24) Bhat, R.; Ahluwlia, J. C. Partial molar heat capacities and volumes of transfer of some amino acids and peptide from water to aqueous sodium chloride solution at 298.5 K. J. Phys. Chem. 1985, 89, 1099– 1105.
- (25) Lark, B. S.; Patyar, P.; Banipal, T. S.; Kishore, N. Densities, partial molar volumes, and heat capacities of glycine, L-alanine and L-leucine in aqueous magnesium chloride solutions at different temperatures. *J. Chem. Eng. Data* **2004**, *49*, 553–565.
- (26) McMillan, W. G., Jr.; Mayer, J. E. The statistical thermodynamic of multi components systems. J. Chem. Phys. 1945, 13, 276–305.
- (27) Zhenning, Y.; Jianji, W.; Honghe, Z.; Dazhuang, L. Volumetric properties of some α-amino acids in aqueous guanidine hydrochloride at 5, 15, 25 and 35°C. J. Solution Chem. **1998**, 27, 473–483.
- (28) Banipal, T. S.; Kaur, D.; Banipal, P. K. Apparent molar volumes and viscosities of some amino acids in aqueous sodium acetate solutions at 298.15 K. J. Chem. Eng. Data 2004, 49, -1236 1246.
- (29) Millero, F. J.; Antonio, L. S.; Charles, S. The apparent molar volumes and adiabatic compressibilities of aqueous amino acids at 25 °C. J. Phys. Chem. 1978, 82, 784–792.
- (30) Berlin, E.; Pallansch, M. J. Densities of several proteins and L-amino acids in the dry state. J. Phys. Chem. 1968, 72, 1887–1889.
- (31) Yan, Z.; Wang, J.; Kong, W.; Lu, J. Effect of temperature on volumetric and viscosity properties of some amino acids in aqueous calcium chloride solutions. *Fluid Phase Equilib.* 2004, 215, 143–150.
- (32) Hepler, L. G. Thermal expanison and structure in water and in aqueous solutions. *Can. J. Chem.* **1976**, *47*, 359–367.

Received for review February 29, 2008. Accepted May 9, 2008.

JE8001464